切换到宽版
  • 569阅读
  • 0回复

[智能应用]面向制造和工业环境监控应用的人工智能机器视觉 [4P] [复制链接]

上一主题 下一主题
在线huozm32831

UID: 329002

精华: 1097
职务: 超级斑竹
级别: 玉清道君
 

发帖
106061
金币
771
道行
19523
原创
29307
奖券
17205
斑龄
189
道券
10126
获奖
0
座驾
 设备
EOS—7D
 摄影级
专家级认证
在线时间: 19961(小时)
注册时间: 2007-11-29
最后登录: 2024-11-14
只看楼主 倒序阅读 使用道具 楼主  发表于: 2022-01-22
— 本帖被 兵马大元帅 执行锁定操作(2024-04-22) —

在传统的工业和制造环境中,监控工人安全、提高操作人员效率以及改进质量检测都是体力工作。如今,基于人工智能的机器视觉技术取代了许多低效的、劳动密集型的操作,并提高了可靠性、安全性和效率。本文将探讨如何通过部署人工智能相机,进一步提高性能,因为用于赋能人工智能机器视觉的数据就来自相机本身。
支持人工智能的机器视觉
根据IoT Analytics报告,2020年,制造业和工业中的人工智能机器视觉市场规模约为41亿美元,预计到2025年将增加至152亿美元,年复合年增长率(GAGR)为30%,而传统机器视觉部署的年复合增长率仅为6.5%。如此高的年复合增长率是因为下一代实时边缘人工智能机器视觉的应用不仅限于质量保证和产品检测应用。
工人的安全是制造业和工业的重中之重,支持人工智能的智能摄像头有助于在这些环境中实现自动化的监控和检测。必须确保在潜在不安全环境(例如危险的机械设备和危险的材料)中工作的员工、承包商和其他第三方操作人员的安全。行为和位置(POSE)检测生成的信息可以表明机器操作人员是否处于危险之中,是否遵循标准的操作流程(SOP)或者以提供生产力和效率的方式在工作。最后,自动光学检测(AOI)可以提高质量控制的速度和准确性,即使对于隐形眼镜等难以看见的产品也能够如此。
人工智能助力智能工人安全
工业环境造成的死亡人数在全球范围内并非闻所未闻。在评估工人安全时,设施还必须考虑非致命的工伤。除了情感创伤意外,通常还需要考虑经济等因素。
工业和制造业通常采用人工监督和光幕来确保工人的安全。然而,人类无法做到无处不在,无所不能,因此会面临出错的危险,另外,安全光幕也有其本身的局限性。
电子围篱
在现代化的智能工厂中,人们经常在具有潜在危险的设备(例如机械臂)周围进行工作。安全光幕通过在机器接入点和周围创建一个感应屏幕来保护人员免受伤害。然而,它们占用大量的地面空间,并且难以部署,缺乏灵活性。在某些情况下,安全光幕的响应时间有限,从而带来其他的问题。
传统的机器视觉解决方案使用灵活且易于部署的IP摄像头和人工智能模块,但是延迟还是比较大,因此不适合需要立即响应的应用场景。

图 1:安全光幕占用地面空间,部署困难,缺乏灵活性,有时响应能力还有局限性。人工智能相机最大限度地减少了延迟,减少了部署空间以及对带宽的要求,并且易于部署和维护。
凌华科技的NEON-2000系列多合一人工智能相机可以解决延迟的问题。在将结果和指令发送到相关设备(例如机械臂)之前,他会捕获图像并执行所有与人工智能相关的操作(见图1)。与光幕和传统机器视觉设施相比,使用多合一智能相机可以最大限度地减少延迟、减少部署空间和对带宽的要求,并且易于安装和维护。
实时的机器视觉人工智能通过提醒工人进入不安全区域并记录该信息以对工人进行再度培训,为增强工人的安全提供好处。记录过去时间的数据,还可能对未来有所帮助。例如,如果工人接近危险区域,机械臂并不需要完全关闭,而是进入一个功能安全的流程循环。诸如此类的例行程序不仅可以提高工人的安全性,还可以提高工厂的运营效率。
智能加油
当加油车到达制造工厂时,它可能会带来许多安全隐患,而这些问题可以通过智能人工智能视觉轻松解决。首先,如果制动不正确或者失灵,可能导致车辆翻滚。训练人工智能机器视觉系统来监控车辆的运动,当其状态发生改变时可以立即发出警报。
相关设施还必须在加油的过程中考虑操作人员的位置,因为存在不同类型的分区违规。确保所有现场工人都了解存在的安全风险变得至关重要。例如,有必要在车辆的四个角放置路锥,并确保为车辆加油的操作员穿着合适的个人防护装备——人工智能视觉可以执行所有的安全检查,以确认所有的流程都是正确的。(参见图2)

图2:虽然主管在现场可以加强安全流程的执行,但并不总是可行的。如果有人闯入危险区域,人工智能机器视觉就可以立即发出警报。
来自人工智能机器视觉系统的即时警报可以警告操作员的安全漏洞并防止其受伤。它还创建了问责制;如果有人在没有穿个人防护装备的情况下进入了不安全的区域,那么记录的图像可以标记错误并教育员工,以防止将来再次犯错。
行为和位置检测
对于制造业而言,“周期时间“是生产效率的关键性能指标。它表示一个团队在产品准备好发货或之前花费在生产项目上的时间。使用人工智能相机技术监控员工的行为和位置,有助于执行标准化流程(SOP)并提高员工的效率,缩短周期时间。

图 3:电子制造产线上的行为和位置检测,有助于提高生产力,并改善订单、数量和生产线之间的平衡。
来自实时视频的行为和位置检测扮演者至关重要的作用,它可以将数字内容和信息叠加在模拟量的世界上。行为和位置使用一组骨骼标志点(例如手、肘或肩)来描述身体的位置和运动。
人工智能机器视觉让工厂操作员和工人能够专注于身体位置是如何影响他们的工作。行为和位置数据是一个很好的培训工具,可以知道操作员如何放置手臂和手才更符合人体工程学、更高效地工作;它还可以改善人们的姿势,这也是另外一个显著的优势。(见图3)
跟踪操作人员是否在生产线上的工作站上,也可以实现自动化并验证时间表。监控他们是否积极遵守标准流程,确保质量管理和生产线平衡。
AI Smart AOI 基于人工智能的智能AOI
利用人工检查产品的质量,其耗时有长有短,最终会导致产线的瓶颈。传统的AOI(自动光学检测)机器视觉,凭借其卓越的准确性和高效率,能够比专业的质量控制人员更快地检测到易于发现的产品缺陷。但是,当缺陷难以检测时,例如隐形眼镜上的缺陷,这些机器视觉系统在准确度和一致性方面则难以满足实际需求。
虽然大多数制造商采用随机抽样的方法来测试产品是否存在缺陷,但是这种方法在隐形眼镜的生产线上是不适用的,因为每片镜片都需要检查。质量控制人员每班最多只能检查4000个镜片,因此产生了生产瓶颈。此外,误检和漏检也是不可避免的。
由于隐形眼镜是透明的,因此,采用机器数据的检测方式历来是这个行业面临的重大挑战。传统的AOI依赖固定的几何算法来发现缺陷,但从透明物体中获取高质量的图像具有较大的难度,从而导致检测的性能无法被客户接受。
使用基于人工智能的智能相机搜集数据用以训练人工智能算法,并持续迭代检测的性能,以此提供更好的解决方案。基于人工智能的智能系统可以识别常见的缺陷,例如毛刺、气泡、边缘粗糙、颗粒、划痕等等(见图4),同时会保留检查日志以供客户参考。

图 4:基于人工智能的智能AOI甚至可以检测透明隐形眼镜中的微小缺陷,与之前使用人工的质量控制流程相比,检测效率得以显著提升
相比人工视觉检测,每个基于人工智能的智能相机可以检测50 多倍数量的隐形眼镜,而且检测精度从 30% 提高到 95%。
结论
利用源自人工智能机器视觉技术所产生的强大且实时的数据,制造商可以获得更多的正常运行时间、获得预防性维护的能力、提高生产力和确保工人安全等等诸多受益。
本文重点提及的人工智能机器视觉应用,需要人工智能算法进行深度学习。开发人工智能算法的软件专家需要一个智能的、可靠的平台来执行人工智能模型推理。预装EVA(Edge Vision Analytics,边缘视觉分析)软件的人工智能相机解决了传统人工智能视觉系统常见的许多问题,提高了兼容性、加快了安装速度,并最大限度地减少了维护工作。
想要成功部署人工智能视觉项目,工程师可能需要长达12周的时间来进行概念验证(PoC)。选择经过优化的相机和人工智能推理引擎、重新训练人工智能模型、优化视频流等都需要较长的学习时间。然而,EVA软件凭借其流水线的结构优势,简化了所有的步骤,并将PoC的时间缩短到2周以内,这也成为启动人工智能视觉项目的理想起点。
山庄提示: 道行不够,道券不够?---☆点此充值☆